Proof that every Eigenvalue of self adjoint operator is real

Published On :2021-06-26 23:41:00

Post Image


 Theorem: Every Eigenvalue of self adjoint operator is real

[begin{array}{l}\ Suppose;T;is;self;adjoint Rightarrow T = {T^ * }\\ ;Let;lambda in F;;;be;eigenvalue;of;T\\ Rightarrow exists ;v in ;{cal V};s.t;;;Tv = lambda v\\ note;that:lambda {left| v right|^2} = lambda leftlangle v right.,left. v rightrangle \\ = ;langle lambda v,vrangle \\ = ;langle Tv,vrangle \\ = ;langle v,{T^ * }vrangle \\ = ;langle v,Tvrangle \\ = ;langle v,lambda vrangle \\ = ;bar lambda langle v,vrangle = ;bar lambda {v^2}\\ lambda = ;bar lambda to lambda ;is;real\ end{array}]