Cauchy Integral Formula

Published On :2021-06-27 01:13:00

Post Image

 

[begin{array}{l} Cauchy;Integral;Formula;begin{array}{*{20}{l}}\ ;\ ; end{array}\\ Theorem:;Let;f;be;analytic;everywhere;inside;and;on;closed;contour;C,;\taken;in;the;positive;sense.;\\ If;{z_0};is;any;point;interior;to;C,;then\\ mathop smallint nolimits_C^; frac{{fleft( z right)}}{{z - {z_0}}}dz = 2pi i;fleft( {{z_0}} right) end{array}]




[begin{array}{l} Example:\\ mathop smallint nolimits_{left| z right| = 3}^; frac{{{z^2} + 2z}}{{z - 2}}dz\\ Solution:\\ Let;C;:;left| z right| = 3.;Since;the;function;fleft( z right) = {z^2} + 2z;,;is;analytic;\within;and;on;C;and;since end{array}]



[begin{array}{l} the;point;{z_0} = 2;;;is;in;C.\\ Then;by;Cauchy;integral;formula\\ mathop smallint nolimits_{left| z right| = 3}^; frac{{{z^2} + 2z}}{{z - 2}}dz = mathop smallint nolimits_{left| z right| = 3}^; frac{{fleft( z right)}}{{z - {z_0}}}dz\\ 2pi i;fleft( 2 right);;;;;;;;;;,;;;;;left( {fleft( z right) = {z^2} + 2z} right)\\ 2pi i;left( {4 + 4} right)\\ 16pi i.\ end{array}]