Inverse Functions And Logarithms 3
Published On :2021-10-18 04:30:00
Inverse Trigonometric Functions
We know that the sine function y=sin x is not one-to-one (use the Horizontal Line Test). But the function f(x)=sin x, is one-to-one so we can find the inverse of it
[Note:{sin ^{ - 1}}x ne frac{1}{{sin x}}]
Remember:
So now we know that the range of sine is between -1 and 1
and the range of inverse sine is between
for that, we should know the facts that
- [{sin ^{ - 1}}(sin x) = x,,for,frac{{ - pi }}{2} leqslant x leqslant frac{pi }{2}]
- [sin ({sin ^{ - 1}}x) = x,,for, - 1 leqslant x leqslant 1]
the same thing we can do with cos and tan
[{cos ^{ - 1}}(cos x) = x,,for,0 leqslant x leqslant pi ]
[cos ({cos ^{ - 1}}x) = x,,for, - 1 leqslant x leqslant 1]
[{tan ^{ - 1}}x = y Leftrightarrow tan y = x,,,,and,,frac{{ - pi }}{2} leqslant y leqslant frac{pi }{2}]